Design and Optimization of Human Motion and Motion Aid Increasing Quality of Life

QOL向上のための運動と補助器の最適化設計

Masafumi OKADA
Tokyo Institute of Technology

Background

- Mechanical engineering, Robotics, Mechatronics, ...
 - Production of useful tools
 - New technologies
 - Mechanism, Sensor, Actuator, Electrical device, etc.
 - Focus
 - Machine creation that works on behalf of the human

- Research field derived from Mechanical engineering
 - Human centric design, Human machine coexistence
 - Machine/Technology creation that increases QOL
 - Delight design or Amenity design
Purpose of this project

- Development of technologies for increasing human Quality of Life
 1. Human motion analysis and optimization based on body dynamics
 2. Design of assistive aids for human life/motion
 - Active/Passive mechanism
 - Self-ownership of the mechanism
 3. Amenity space design for comfortable life

Collaboration

MIT : Prof. Asada
Tokyo TECH : Prof. Okada

- Research interests
 - Human machine coexistence
 - Human motion analysis and design (kinematics/dynamics)
Research sources (Prof. Okada, Tokyo TECH)

1. Human assistive device
 - Passive walking aid for our daily life
 - Challenge
 - Appropriate assistive force
 - Realization by a nonlinear spring (design of nonlinear spring)

Research sources (Prof. Okada, Tokyo TECH)

- Assistive force
 - Motion capture and inverse dynamics
 - Energy accumulation

- Nonlinear spring
 - Two characteristics
 - Grooved cam

Energy release
Energy accumulation
Spring

5th order polynomial

F [N]

ϕ [rad]

-0.2
0.4
0.6

-30
-20
-10
0
10
20
30

-30
-20
-10
0
10
20
30

Research sources (Prof. Okada, Tokyo TECH)

2. Human motion analysis and motion instruction using enhanced motion

- Target: Chest compression
 - First aid cardiac compressions
 - Enhanced motion
 - He generates 480N (about 70% of his body weight)
 - It requires larger force than it looks
 - It is difficult to see only from a demonstration

Research sources (Prof. Okada, Tokyo TECH)

- Human dynamics
 \[M(\theta)\ddot{\theta} + C(\theta, \dot{\theta}) + K(\theta) = \tau \]
- Motion modeling
 - Autonomous controlled system
 \[\tau = h(\theta) \]
 - The controller is decomposed into ‘reference generator’ and ‘feedback gain’
 \[\theta^{ref} = -\left(\frac{\partial h(\theta)}{\partial \theta} \right)^{\#} h(\theta) + \theta \]

Enhanced motion = Pseudo-reference
Research sources (Prof. Okada, Tokyo TECH)

- Enhanced motion for chest compression

![Diagram of enhanced motion for chest compression]

- Application to sports instruction

Research sources for collaboration

- Robust motion optimization
 - robot control
 - human motion design

point of view
Research sources for collaboration

- **Accuracy of robot control**
 - Iterative assessment → average and variance
 - Sensitivity analysis (analytical)

\[
\dot{x} = f(x) + g(x)u
\]
\[
x(t_e) = \int_0^{t_e} f(x)dt + \int_0^{t_e} g(x(\tau))u(\tau - t)d\tau
\]
\[
\frac{\partial x(t_e)}{\partial \ell} = \ldots
\]

Dynamics sensitivity
Low sensitivity is required

- **Human skilled motion**
 - Ex.: Free-throw in basketball
 - High shoot average even though the existence of the perturbation
 → **Low sensitivity**

- **Purpose**
 - Sensitivity analysis (dynamic/kinematic)
 - Optimization of the throwing motion
 (low sensitivity motion)
Research sources for collaboration

- Dynamic sensitivity analysis of throwing motion
- Problem formulation

\[\Delta \theta_0, \Delta \dot{\theta}_r \]

Sensitivity analysis \(\Delta \theta_0 \rightarrow \Delta x_r \)

The lower sensitivity has the higher accuracy

Research sources for collaboration

- Calculation results

\[\Delta x_r \rightarrow \Delta x_s \]

Comparative release point

\[36.1 \rightarrow 139.2 \]

Minimum sensitivity

Accuracy of landing point

- Histogram of landing point

\[
\begin{align*}
\frac{36.1}{139.2} &= 0.259 \\
\sqrt{\frac{0.030}{0.474}} &= 0.252
\end{align*}
\]
Collaborative research

Towards human motion
- Free-throw in basketball
- Motion optimization with small sensitivity

Challenge
- **Whole body motion**: redundancy
 - *Synergy*-based motion analysis
 - *Sensitivity*-based optimization

To other dynamic motions
- Gymnastics, Football, Daily life, etc.

Assistive tool design

Collaborative research

Application to robotics
- Bipedal robot
 - Controller stabilizes the robot
 - Reference is designed based on the robot dynamics
 - So many sensor information

Dynamics sensitivity analysis
- Reference \rightarrow motion perturbation *Robust trajectory design*
- Sensor noise \rightarrow motion perturbation *Robust sensing*
 - Which sensor data is useful or important?